16 research outputs found

    3D virtual haptic cone for intuitive vehicle motion control

    Full text link
    Haptic human-machine interfaces and interaction techniques have been shown to offer advantages over conventional approaches. This work introduces the 3D virtual haptic cone with the aim of improving human remote control of a vehicle\u27s motion. The 3D cone introduces a third dimension to the haptic control surface over existing approaches. This approach improves upon existing methods by providing the human operator with an intuitive method for issuing vehicle motion commands whilst simultaneously receiving real-time haptic information from the remote system. The presented approach offers potential across many applications, and as a case study, this work considers the approach in the context of mobile robot motion control. The performance of the approach in providing the operator with improved motion controllability is evaluated and the performance improvement determined.<br /

    Haptic control methodologies for telerobotic stair traversal

    Full text link
    Teleoperated mobile robots provide the ability for a human operator to safely explore and evaluate hazardous environments. This ability represents an important progression towards the preservation of human safety in the inevitable response to situations such as terrorist activities and urban search and rescue. The benefits of removing physical human presence from such environments are obvious, however challenges inhibiting task performance when remotely operating a mobile robotic system need to be addressed. The removal of physical human presence from the target environment introduces telepresence as a vital consideration in achieving the desired objective. Introducing haptic human-robotic interaction represents one approach towards improving operator performance in such a scenario. Teleoperative stair traversal proves to be a challenging task when undertaking threat response in an urban environment. This article investigates the teleoperation of an articulated track mobile robot designed for traversing stairs in a threat response scenario. Utilising a haptic medium for bilateral human-robotic interaction, the haptic cone methodology is introduced with the aim of providing the operator with a vision-independent, intuitive indication of the current commanded robot velocity. The haptic cone methodology operates synergistically with the introduced fuzzy-haptic augmentation for improving teleoperator performance in the stair traversal scenario.<br /

    Towards a haptically enabled optometry training simulator

    Full text link

    Solution to robotic landmine detection through use of path planning and motor control

    Full text link
    Low cost robotic detectors are a promising new approach to combat the disturbing landmine crisis. In this paper a low-cost robotic solution is proposed, we present several control techniques used to improve the precision of the robotic motion. A P and PD controller is applied, and it is concluded that a cascaded control system provides a more stable and accurate response. Two search patterns for landmine detection are considered, rectangular and spiral, these are used to analyse the effectiveness of the control system.<br /

    Method and apparatus for haptic control

    Full text link
    The present invention provides remote interfacing utilising haptic technology. In a first aspect there is provided a haptic grasping interface comprising a plurality of finger interaction points, with actuators connected at one end to an actuator control mechanism. The mechanism is mounted remotely from the grasping interface, inverse to the finger interaction points, for manipulation of these points. The grasping points comprise pulleys which route the actuators through a cable tension and transmission system. A second aspect provides haptic augmentation to an operator, which indicates to the operator the state of a control input to a controlled device. A third aspect provides a means of simulating motion where haptic feedback is provided to a user in correspondence with the movement of the user within a pod environment

    Countering Improvised explosive devices through a multi-point haptic teleoperation system

    Full text link
    Improvised Explosive Devices (IEDs) are reported as the number one cause of injury and death for allied troops in the current theater of operation. Current stand-off technologies for Counter IED (CIED) tasks rely on robotic platforms that have not improved in capability over the past decade to combat the ever increasing threat of IEDs. While they provide operational capability, the effectiveness of these platforms is limited. This is because they primarily utilise video and audio feedback, and require extensive training and specialist operators. Recent operational experience has demonstrated the need for robotic systems that are highly capable, yet easily operable for high fidelity manipulation. Force feedback provides an operator with more intuitive control of a robotic system. This sense of touch allows an operator to obtain a sense of feel from a stand-off location of what the robot touches or grasps through a human-robot interface. This paper reports the design and development of a Haptically-Enabled Counter IED robotic system that was funded by the Australian Defence Force. The presented work focuses on the design methodology for the system, and provides the results of the manipulator analysis and trial outcomes.<br /

    Extending support to customised multi-point haptic devices in CHAI3D

    Full text link
    &nbsp;CHAI3D is a widely accepted haptic SDK in the society because it is open-source and provides support to devices from different vendors. In many cases, CHAI3D and its related demos are used for benchmarking various haptic collision and rendering algorithms. However, CHAI3D is designed for off-the-shelf single-point haptic devices only, and it does not provide native support to customised multi-point haptic devices. In this paper, we aim to extend the existing CHAI3D framework and provide a standardized routine to support customised, single/multi-point haptic devices. Our extension aims at two issues: Intra-device communication and Inter-device communication. Therefore, our extension includes an HIP wrapper layer to concurrently handle multiple HIPs of a single device, and a communication layer to concurrently handle multiple position, orientation and force calculations of multiple haptic devices. Our extension runs on top of a custom-built 8-channel device controller, although other offthe shelf controllers can also be integrated easily. Our extension complies with the CHAI3D design framework and advanced provide inter-device communication capabilities for multi-device operations. With straightforward conversion routines, existing CHAI3D demos can be adapted to multi-point demos, supporting real-time parallel collision detection and force rendering
    corecore